Bine ai venit pe acest blog!

Bine ai venit pe acest blog! Ca să afli repede dacă aici poți găsi răspunsurile pe care le cauți, te rog să parcurgi sumarul de mai jos. Aici vei găsi:
1). Informații utile din domeniu despre: hărți climatice și eoliene ale României, R'=Rc minim, centrale cu condensare, S.E.T., puffere, radiatoarele vechi din fontă, Delta T, respirația pereților, ventilația mecanică cu recuperare de căldură , formule de calcul etc.
2). Probabil cel mai complet și realist program GRATUIT pt calcule termice, pt 12 camere, denumit Radia3 (fișier tip excel);
3). Un alt fișier pt calcul termic, altfel structurat dar la fel de gratuit și precis ca toate celelalte, pt o singură cameră, denumit ~CalculTermic~;
4). Un fișier a cărui denumire spune tot: Calcul volum Puffer & Boiler;
5). Un fișier pentru dimensionarea încălzirii prin pardoseală cu agent termic (IPAT): ~Calcul IPAT conform EN 1264~;
6). Un alt fișier a carui denumire spune tot: ~Calcul termic SERE - nou!~;
7). Un fișier cu care poți calcula puterea reală a oricărui radiator pt orice temperaturi de Tur/Retur/Interior, plecând de la puterea lui la temperaturile de T/R/I date de producator: ~Conversie puteri radiatoare~.
8. Două fișiere care transformă pierderile de căldură prin zidărie cu sau fără izolație termică SAU prin tâmplărie de orice fel în bani economisiți pe lună/an sau în ani de recuperare a cheltuielilor / investiției.
9. Un fișier numit Economie prin pardoseală, sau Calcul grosime optimă a izolației sub IPAT care transformă pierderile de căldură în jos prin izolație ale unei pardosele cu IPAT în bani economisiți pe lună/an sau în ani de recuperare a cheltuielilor / investiției.

sâmbătă, 13 mai 2017

Izolație vs Economie - prin zidărie

Iată că au trecut 9 ani de la prima mea postare pe această temă, și totodată de la primul fișier postat pe blog legat de acest subiect, încă fierbinte și de actualitate. Si anume crearea unei legături mai vizibile, pt cei fără cunoștințe în domeniu, între izolarea termică totală oferită de pereții exteriori sau planșeele unei locuințe și ... buzunarul proprietarilor.

Sunteți în căutarea materialelor de construcție optime pt casa dvs, cu cel mai bun triplu raport preț / calitate / beneficii în timp?

Vă tot uitați pe net la prețuri pe metrul cub sau pe metrul pătrat de zidărie la cărămidă / bca, sau la polistiren / vată minerală, și nu știți ce să alegeți, pt că nu știți ce materiale și la ce grosime vă aduc cea mai mare economie la factura de încălzire?

Aveți în minte câteva variante de zidărie și/sau de izolație termică și nu vă puteți hotărâ pe care să o adoptați, pt că toate se laudă că izoleaza termic cel mai bine, deși bănuiți că nu este chiar așa?

Ați căzut de acord cu familia asupra tipului de zidărie pe care o să îl folosiți la casa nouă, dar nu și asupra grosimii pereților exteriori, pt că nu știți dacă și cu ce și cu cât să-i mai izolați termic?

V-ați calculat costurile câtorva variante agreate cu familia și nu știți dacă diferențele de preț dintre ele se justifică și ce beneficii materiale v-ar putea aduce în timp în viitor varianta mai scumpă și mai performantă din punct de vedere termic?

Oare v-ați hotărâ mai ușor asupra tuturor acestor variante dacă ați putea compara rapid, precis și fără bătăi de cap pierderile de căldură prin diferite variante și grosimi de zidărie și de izolație termică, pt întreaga suprafață a pereților dvs exteriori? Sau a întregului planșeu spre pod?

V-ați pierdut printre calcule, coeficienți, lambda-uri și rezistențe termice, și nu știți cum se leagă toate acestea de pierderile de căldură viitoare ale casei? Iar acestea, la rândul lor, de cantitatea de combustibil folosită pt încălzire?

V-ar ajuta să știți cât ar costa gazul, sau curentul electric, sau lemnele necesare pt a genera energia (căldura) pierdută prin pereții exteriori sau planșeele casei dvs, întro lună de iarnă sau întro iarnă întreagă?

Ați fi curioși să știți în cât timp v-ați recupera diferența de cheltuieli (de construcție de la zero sau doar de termoizolare) între diferite tipuri și grosimi de materiale de construcție și/sau de izolație pe care le-ați putea folosi la casa dvs?


Dacă ați răspuns cu „da” cel puțin la una dintre întrebările de mai sus, atunci sunt șanse foarte mari ca fișierul pe care vi-l propun cu această ocazie să fie exact ceea ce aveți nevoie ca să vă răspundeți singuri la întrebări și să vă ajute să vă hotărâți pt care varianta de zidărie și/sau termoizolație să optați.


~Economie prin zidărie~ 45 KB; fișier pt calculul economiei în bani și în ani :) prin zidărie


PS1. În cazul unui planșeu PE SOL, sau în contact cu solul, calculele se fac altfel. Folosit pt un astfel de planșeu, acest fișier nu oferă tocmai rezultatul cel mai corect. Pt asta, vezi ”Radia3” sau ”~CalculTermic~” (Qs). Sau, dacă aveți încălzire în pardoseala, vedeți fișierele Calcul IPAT conform EN 1264 sau Calcul grosime optima izolatie sub IPAT, sau Economie prin pardoseala
PS2. Dacă folosind acest fișier v-ați calculat pierderile de căldură prin pereții exteriori și planșeul spre pod (de ex.), să știți că suma lor NU reprezintă necesarul termic total al casei. Aici NU se ține cont de pierderile de căldură prin ventilație, prin sol etc etc.
LATER EDIT 14 noiembrie 2022 Am actualizat în fișier prețurile pt kWh !!! Cu toții vedem cât de mult au crescut în ultimul an prețurile la energie, de orice fel ar fi ea: gaze, lemne, curent electric. Și ce inflație de 2 cifre avem, și care nu pare să se domolească prea curând. În aceste condiții, devine cu atât mai rentabilă orice investiție actuală în izolarea termică a locuinței noastre, pt a-i reduce cât mai mult posibil pierderile de căldură. De ex, (aproape) orice fel de zid ai avea, diferența de preț între 10 cm și 20 cm de izolație termică pe acel zid se "acoperă" în cel mult 6-8 ani de zile, și asta cu prețul actual plafonat al gazului / curentului electric !!! La prețul întreg, NEplafonat, în cel mult 5 ani !!!

duminică, 12 martie 2017

Izolație vs Economie - prin tâmplărie

Din păcate, aproape toți beneficiarii care caută “termopane”, își încheie căutarea după ce au ales profilul PVC!
Există următoarele tendințe de abordare a acestei căutări:
a.) Unul cât mai “nemțesc” posibil, sau măcar “austriac”. Sau unul care sa "sune" nemteste, gen Weissprofil (care e bulgaresc toata ziua, din categoria super-economic). Fabricat “cât mai la ei”, nu “înspre noi” sau în altă parte 😉 Mie îmi place aia cu “e bun, e fabricat cu tehnologie Austria” (unde și mai ales cum, Dumnezeu cu mila…). De parcă dacă un strung este bun, atunci orice piesă ar face un Dorel la acel strung este bună.
b.) Unul cu cât mai multe “camere”. Dacă-i întrebi pe beneficiari, nu prea știu care-s alea și la ce-s bune, da’ tre’ să fie cât de multe, ca să fie bine … și ca să nu fie rău ;) . Hmm, și mai ziceți că marketingul e degeaba…
c.) Unul “de marcă”, unul de care “am auzit” (din reclame, sau de la vecinu’). Dacă tâmplăria “este” Veka, Salamander, Rehau, Trocal sau Gealan, e suficient! 😊 Că restul componentelor pot fi de 2 lei, aia e! Că doar cine-o fi nebun să-i spună asta clientului? Pe principiul: “Ce nu știi, nici nu contează!”.
d.) Dacă bugetul e “strâmt”, nu-i nimic: poate fi și un profil PVC fabricat loco, no-name, economic, clasa C spre D 😊, ieftin ca foamea, pentru că “e la fel ca celelalte”, și “oricum, toate fac același lucru, așa că de ce să dai în plus?”. Că la ăsta nici nu merită să pui componente bune, nici nu mai vorbim…

Ei bine, deși în fiecare există un pic de adevăr, nu trebuie să facem din niciuna motivul principal de achiziție. Pot exista multe capcane…

O tâmplărie de calitate în ansamblul ei presupune mult mai multe decât un profil PVC de “marcă”:
* un pachet de sticlă cât mai performant din punct de vedere termic (și fonic la nevoie),
* o feronerie de calitate și, mai ales, complet echipată (cu mânere antiefracție de tip Secustik, cu micro-ventilație, cu piesă contra acționării greșite a mânerului, cu bolțuri tip ciupercă, cu suficiente puncte de blocare în funcție de dimensiunea ferestrei / ușii etc),
* o armătura metalică solidă (cu pereții suficient de groși, în funcție de culoarea și dimensiunea ferestrelor și mai ales a ușilor) pt o rigidizare optimă a profilelor PVC. Este foarte importantă și are o pondere însemnată în prețul final al tâmplăriei. Având în vedere că nu se vede și este mai greu de verificat la produsul finit, este componenta prin care se “umblă la preț” cel mai adesea (nu se pune, sau se pune una de o grosime mai mică decât ar trebui). Asta poate fi valabil la producătorii mici, așa-zișii “garajiști”, însă marii producători nu se “joacă” și le armează așa cum prevede producătorul profilelor, pt că oferă garanții ferme pe produsul finit!
* o buna configurare a pieselor de tâmplărie (ca și deschideri, cu profile de cuplare armate, ca dimensiune a “ochiurilor”, cu foi de sticlă mai groase sau laminate acolo unde se impune, cu cercevele mai late și colțare sudabile la uși etc),
* si nu in ultimul rand un montaj profesionist (piese de tâmplărie de pe aceeași fațadă aliniate la nivel, spumă de montaj de calitate aplicata suficient, șuruburi de fixare suficient de lungi si de dese, sticla calată bine, reglaje fine etc).

Dacă la oricare dintre aceste componente ale unei tâmplării se face rabat de la calitate, atunci chiar dacă toate celelalte ar fi perfecte, tâmplăria rezultată nu va mai fi de calitatea maximă dorită.

Da, ar fi bine să fie un profil produs de o firmă de renume din acest domeniu, ca o oarecare garanție a calității profilului PVC, dar asta nu înseamnă NEAPĂRAT că tâmplăria va fi una de calitate. Sunt destule făbricuțe de tâmplărie care prelucrează profile de marcă, dar cu ajutorul Doreilor din fabrică, sub atenta nepăsare a patronilor, produsul finit este de slabă calitate.

De asemenea, deși se întămplă adeseori, este greșit să se compare profile PVC (și implicit tâmplării) din serii diferite ale producătorilor. Degeaba comparăm un Veka (de marcă, nemțesc, clasa A etc) de 60 mm grosime cu 3 camere, cu un Gealan sau Teraplast de 82 mm grosime cu 6 camere. Poate nu sunt nemțești, poate nu sunt clasa A, dar nu le poți compara, pt că sunt … altceva. E ca la mașini: dacă vrei să compari VW cu Ford, păi compară Polo cu Fiesta si Touareg cu Kuga. Că dacă compari Ford Ka cu VW Sharan, sau Ford Mondeo cu VW Lupo ... îți dă cu virgulă.

Da, e bine să aibă mai multe camere, cu 2 condiții: profilul să fie și mai gros, iar pereții ăia despărțitori să nu fie subțiri ca foița de țigară. Aceste mai multe camere ar trebui să ajute la stabilitatea și rigiditatea profilului, precum și la un coeficient de transfer termic mai bun (mai mic). La o aceeași grosime a profilului PVC, 1-2 camere în plus nu înseamnă mai nimic dpdv termic. De exemplu, Gealan are un profil de 62 mm grosime (60 mm este minimul impus de normativele în vigoare) care este produs atât cu 3 camere, cât și cu 5 camere. Și să-i vezi cum mai dau cu reclama în populație: vă oferim tâmplărie cu 5 camere la preț de 3 camere, promoție specială! Și cum românul știe că tre’ să fie multe camere, pune botul și crede că si-a luat tâmplărie de top la preț de chilipir. Aiurea! Tot un drac sunt! Ambele variante reprezintă practic aproape minimul din domeniu, alături de variantele de 60 mm grosime ale celorlalți producători. Așa că, la aceeași grosime, mai bine un profil clasa A cu X camere, decât unul clasa B (sau C spre D :)) cu X+2 camere.
Pentru cei care nu știu, profilele din clasa A au pereții exteriori de 3 mm grosime, iar profilele din clasa B de 2,8 mm grosime. Alte clase, gen C sau D, NU exista decât în glumă, deși există pe piață profile PVC care cred că acolo s-ar încadra :))

Dacă bugetul pt tâmplărie este mic, sau pretențiile nu sunt mari, este ok să te îndrepți către un profil economic, mai subțirel, mai pricăjit, mai no-name, mai ieftinel. Însă atenție: de cele mai multe ori, un profil PVC economic se folosește pt a produce tâmplărie foarte ieftină. Asta înseamnă că, pe lângă profilul ieftin, este foarte posibil ca TOATE celelalte componente ale tâmplăriei, enumerate mai sus, să fie de tip economic, foarte ieftine, și implicit de (cea mai) slabă calitate: feroneria – turcească, de 2 lei, echipare minima; armatura – din ce are Dorel pe stoc, daca n-are, bun o fi si un profil U de la Rigips ;) ; sticla – maxim cu LowE, argonul e doar moft, sigilanți ieftini, de 2 lei; montajul – alți Dorei, cu berea-n bot, și cu spumă puțină că de, o parte din ce le dă firma tre’ s-o vândă, să-și rotunjesca fondul de beutură. Așa că dintr-o suită de componente de slaba calitate, nu poate rezulta decât un produs execrabil!

Probabil ca am exagerat. Sau poate nu? Vorbiți cu cei pățiți... Dar nuuu, românului îi place să se mintă singur, să se auto-încurajeze: pe undeva, e conștient că ar putea să pățească așa, dar își spune “Doar n-o să se întâmple tocmai la mine! Doar e din satul vecin, e cumnatu’ lu’ văru’!”. De multe ori, românul se amăgește singur și îi este mai ușor să creadă că un preț mic pentru tâmplărie înseamnă o promoție extraordinară și nesperată, doar pt el, sau un chilipir norocos, sau o negociere “la sânge” de-a lui cu producătorul, decât faptul că prețul mic înseamnă în realitate că tocmai s-a tăiat din calitatea unor componente ale tâmplăriei, mai mult sau mai puțin esențiale, de care el de cele mai multe ori habar nu are si evident că nici nu i se spune. Uneori, judecând astfel, clientul / beneficiarul însuși contribuie la înfăptuirea țepei, mai mici sau mai mari, la noroc, pe care tocmai este pe cale să și-o ia cu achiziționarea tâmplăriei.

O casă medie (suprafață locuită 120-150 mp) are cam 30 mp de tâmplărie. De aici, cam 30-40% o reprezintă tâmplăria propriu-zisă (profilele din PVC / lemn / aluminiu). Adica vreo 10 mp de “rame” (toc și/sau cercevea). Restul de 20 mp este sticla, componenta cu cea mai mare suprafață și cu cel mai important rol în izolarea termică și fonică a tâmplăriei! Și totusi, calitatea pachetelor de sticlă este cel mai neglijat aspect în procesul de căutare și informare al beneficiarilor. După ce au ales profilul PVC, unii și marca de feronerie, gata! Nu se mai interesează nimeni de sticlă! A, ba da, unii mai intreabă de sticla 4S (4 Anotimpuri)… În rest, nu mai contează unde e făcută, cum e făcută, dacă are sau nu argon între toate foile de sticlă, dacă introducerea lui se face prin supape (clasic) sau prin sigilarea pachetelor de sticlă în mediu de argon (modern), dacă conține 1 sau 2 foi de sticlă tratate cu LowE și/sau 4S, dacă bagheta-distanțier de aluminiu este întreruptă la colțuri sau îndoită, daca foile de sticlă sunt aliniate perfect în pachetul de sticlă (nu decalate una față de alta) etc.

Poate de aceea încă mai există firme și ofertanți care, ori din nepăsare, ori din neștiintă:
* nu pun și nu recomandă argonul între sticle, pe motiv că “și-așa iese și se pierde în 2-3 ani”. Dacă pachetul de sticlă este bine sigilat, cu sigilanți de calitate, atunci concentrația de argon va fi ok și după mulți ani. În primii ani, își poate pierde din concentrație, până se va stabiliza la o anumită valoare, de 60-80%. Și așa să fie și tot e mai eficient termic decât cu aer!
* sau mai rău, nu introduc argon deși spun că o fac, pt că “e scump și nu se merită”, pe principiul “spune-i clientului ce vrea să audă, apoi fă cum știi tu“ 
* la pachetul compus din 3 foi de sticlă (bicameral, sau tripan) pun argon doar într-o singură cavitate, nu în ambele, reducând astfel izolația termică maximă posibil de oferit,
* tot la tripan, pun cel mult o singură foaie de sticlă tratată, de obicei LowE, în loc de 2 foi cu LowE, sau una cu LowE și una cu 4S, pe motiv că “face șoc termic și se sparge sticla, așa că nu dau garanție!”, rezultând astfel un tripan cu un coeficient de transfer termic Ug (g=glass=sticla) mai mare, adică mai slab, mai puțin performant termic decât maximul la care s-ar putea configura.
* recomandă tripan chiar și la grosimi mici ale pachetului de sticlă, de 32 mm de exemplu, care este prea subțire pt a fi cu adevărat eficient din punct de vedere termic. Iar dacă mai este și prost configurat, așa cum am descris mai sus, atunci va izola termic la fel sau chiar mai prost, comparativ cu un termopan clasic (monocameral, sau bipan). Și uite așa poți plăti și monta degeaba tripan! Sau poate a fost o “ofertă specială”, doar pt tine , cu a treia foaie de sticlă gratis  Păi normal că e gratis, dacă tot e degeaba și nu te ajută cu nimic!!!
* recomandă tripan simplu (cu toate cele 3 foi de sticla de 4 mm grosime) pt izolație fonică suplimentară față de bipan, deși diferența de 1 dB este neglijabilă și imperceptibilă. Programul Calumen dă urmatoarele date pt coeficientul de atenuare fonică Rw(C;Ctr) : 31(-1;-4) la bipan cu 2 sticle de 4 mm grosime, si 32(-1;-4) la tripan cu 3 sticle de 4 mm fiecare. Pt izolare fonică adevarată, este nevoie de foi de sticlă de grosimi diferite, atât la bipan, cât și la tripan. Spre exemplu:
* Bipan (24 mm) cu o sticla de 4 si una de 6 mm grosime (LowE+Argon): Rw=35(-1;-5); Ug = tot 1,1 W/mp*K.
* Bipan (24 mm) cu o sticla de 4 si una de 8 mm grosime (LowE+Argon): Rw=36(-2;-5); Ug = 1,3 W/mp*K (începem să pierdem la izolarea termică).
* Tripan (42 mm) cu o sticla de 4, una de 5 si una de 6 mm grosime (2 foi LowE+Argon): Rw=37(-1;-5); Ug = 0,7 W/mp*K (față de 0,6 cu 3 sticle de 4 mm!).
Pt cazuri extreme, mai există sticlă laminată (denumită și anti-efractie), dar cu proprietăți antifonice: 2 foi de sticlă lipite între ele cu unul sau mai multe straturi de PVB (PoliVinilButiral). Ex: bipan (24 mm) cu o sticla laminata antifonica 44.2 Silence și una de sticlă laminată standard 33.1 cu LowE: Rw=39(-2;-6). Având în vedere că este o scara logaritmică, diferențele sunt notabile. Evident, pierdem la izolația termică: 1,4 W/mp*K. Dar dacă punem bagheta-distanțier de 18 mm lațime, rezultând un bipan de 32 mm grosime, revenim la normal cu Ug = 1,1 W/mp*K.

Având în vedere importanța pachetului de sticlă în ceea ce privește izolarea termică, vă supun atenției, în buna tradiție a blogului, un fișier care își propune să cuantifice și să transforme în bani economisiți diferențele de izolare termică existente între 2 configurații diferite ale pachetelor de sticlă. Utilizatorul poate selecta dintr-o mulțime de configurații posibile, între bipan de 24 mm grosime, cu sticle “chioare” și fără argon, până la tripan de 52 mm grosime, cu 2 foi de sticlă tratate LowE și/sau 4S și argon în ambele cavități. Astfel, își poate da singur răspuns la întrebări de genul: “Oare merită să-mi pun tripane?”, “Cât aș economisi cu ele?”, sau “În cât timp mi-aș amortiza investiția?”.



PS 1. Valorile Ug din fisier sunt calculate prin simulări în programul gratuit Calumen II, versiunea 1.3.5, al celor de la Saint Gobain Glass. Vi-l puteți descărca și voi de aici: http://ro.saint-gobain-glass.com/content/calumen-0.

PS 2. Marea majoritate a datelor despre temperaturi le-am luat de pe:
http://meteoplus.antena3.ro/statistici-bucuresti-baneasa/temperaturi-medii-multianuale
Insă de acolo lipsesc datele pentru câteva localități importante, pe care le-am “pescuit” din altă parte:
• Pentru Iași: http://www.vremea-iasi.ro/clima
• Pentru Miercurea Ciuc: http://amfostacolo.ro/temperaturi.php?in=miercurea-ciuc-romania&sid=1207
• Pentru Satu-Mare: http://amfostacolo.ro/temperaturi.php?in=satu-mare-romania&sid=1166

Acuma, nu mă întrebați cât de recente, reale și corecte sunt aceste date. Pe astea le-am gasit, pe astea le-am folosit. Dacă aveți altele mai noi sau mai realiste, vă rog să mi le trimiteți, și voi ține cont de ele.



~Economie prin tamplarie~ 45 KB; fisier pt calcul economie in bani si in ani prin tamplarie

marți, 14 februarie 2017

ENERGIE si PUTERE

Salutari tuturor pentru 2017!

Stiu, e februarie deja, dar fiind prima postare, mi-am permis ;)
Plus ca am vrut sa va instiintez ca nu am murit! Inca! De parca ar conta... ;)

Tocmai cautam complet altceva pe net, cand am dat peste urmatorul .pdf, pe care vreau sa il reproduc integral aici. Sper sa nu se supere autorii!

Este vorba despre una dintre cele mai bune "lectii" de scoala cu privire la ceea ce inseamna PUTEREA si ENERGIA ! Sunt convins ca (cei mai) multi dintre noi au anumite nelamuriri cand vine vorba de acesti doi termeni, de aceste 2 marimi fizice: ENERGIA sau PUTEREA. Ei bine, aici ni se explica frumos, pe românește, despre ambele, precum si despre relatia dintre ele. Cu greu as fi putut redacta o postare mai completa pe acest subiect!

EnjoY!



Ghidul începătorului în energie şi putere
Articol propus de Neil Packer, Staffordshire University, UK, February 2011


Energia

Energia reprezintă capacitatea de a efectua un lucru mecanic.
Ca şi în alte cazuri, unitatea de măsura pentru energie este denumită dupa numele unui cercetător a cărui contribuţie in domeniu a fost importantă. Unitatea de masura pentru energie recunoscută la nivel international (dar nu şi in SUA) este Joule-ul (sau Wh = watt-ora, vezi mai jos).
Fizician si fabricant de bere, James Joule (1818-1889) şi-a dedicat cariera (35 de ani) examinării diverselor forme de conversie a energiei cu mai mare precizie decât o facuseră mai înainte cercetătorii in acest domeniu. El a studiat multe cazuri de conversie a energiei mecanice in căldură sau energie termică. El a determinat echivalenţa dintre lucrul mecanic consumat şi cantitatea de căldură rezultantă. Studiile sale au confirmat principiul conservării energiei cu luarea in considerare a frecării şi rezistenţei aerului.
Un Joule reprezintă o cantitate mică de energie şi de aceea este mai des utilizată o altă unitate de măsură, kilowatt-ora (abreviată kWh).
Conversia intre unităţi este: 1 kWh = 3,6 milioane Jouli (abreviat 3,6 MJ).
[nota mea: o ora are 60 de minute x 60 de secunde / minut = 3.600 s = 3,6 mii de secunde intr-o ora; x 1.000 pt ca este vorba de KWh, nu Wh]
Intr-un regim de funcţionare continuă 1 kWh de energie vă va asigura, de exemplu:
• 2 zile de utilizare a unei lămpi fluorescente mici
• 10 ore de utilizare a televizorului
• 5 ore de utilizare a PC-ului
• 70 minute de utilizare a cuptorului cu microunde
• 60 minute de tuns iarba
• 4 minute de funcţionare a boilerului din gospodărie la capacitate maximă
• 100 secunde de funcţionare a unei maşini mici la putere maximă

Puteţi vedea că şi kWh reprezintă o cantitate mică de energie, de aceea se utilizează Megawatt-ora (abreviată MWh), adică 1000 kWh.

Comparaţii între combustibili

Din punct de vedere istoric noi am obţinut în general energie consumând combustibili fosili, astfel încât luarea în considerare şi compararea surselor de combustibil în ceea ce priveşte cantitatea de energie unitară pe care o conţin ar putea fi instructivă. Unele indicaţii în acest sens (utilizând valorile medii) sunt prezentate mai jos.
1 kg de antracit (4% umiditate) = 36MJ = 10 kWh
1 m3 gaz natural = 39 MJ = 10,8 kWh
1 litru de benzină = 34 MJ = 9,4 kWh
1 litru de motorină = 40 MJ = 11,1 kWh
1 litru gaze petroliere lichefiate = 41 MJ = 11,4 kWh
1 litru păcură = 44 MJ = 12,2 kWh
(Valorile de mai sus sunt valori ale puterii calorifice brute adica includ energia pentru evaporarea apei care se formează in timpul arderii).
Prin comparaţie, 1kg de combustibil regenerabil cum ar fi biomasa lemnoasă conţine de obicei 4,2 kWh.
Stabilirea preţului energiei conţinute este un concept interesant. De exemplu, 1 litru de motorină conţine cu aproximativ 18% mai multă energie decât 1 litru de benzină şi cu toate acestea, preţul motorinei la pompă este practic egal cu cel al benzinei.


Puterea

Puterea reprezintă ritmul in care se efectuează lucru mecanic.
Şi in acest caz unitatea de masură pentru putere este denumită dupa numele unui cercetător a cărui contribuţie în domeniu a fost importantă. Unitatea de masura pentru putere [corectat fata de original, in loc de “energie”] recunoscută la nivel international (dar nu şi in SUA) este Watt-ul.
Inginerul şi inventatorul scoţian James Watt (1736-1819) a fost angajat de Universitatea din Glasgow pentru repararea unui model al celui mai avansat motor cu abur din acele timpuri, motorul Newcomen. Watt a făcut o gamă de îmbunătăţiri termice şi mecanice ceea ce a condus la creşterea randamentului cu 300 % şi a permis ca motorul să fie universal acceptat oriunde era necesară mai multă putere.
Un Watt reprezintă consumul unui Joule pe secundă.
Valoarea puterii este menţionată de obicei pe dispozitivele care consumă şi/sau generează energie şi ne arată de cât de rapid este utilizată sau produsă energia.
Un Watt este o cantitate mică de putere şi de aceea se utilizează de obicei un multiplu, kilowatt-ul (abreviat kW), adică 1000 Watt.

In continuare se prezintă in scop ilustrativ puterea unor echipamente:
• PC-uri: 50-200 W (consum)
• Cuptoare cu microunde: 650-850W (consum)
• Aparate de tuns iarba: 1-1,7kW (consum)
• 20mp de panouri fotovoltaice: 2,5kW vârf (producere)
• Boiler pe peleti de uz casnic: 15kW (producere)
• Turbina eoliană cu ax orizontal de 50 m diametru : 500kW vârf (producere)
• Turbine cu abur: până la 60 MW (producere)
• Turbine cu gaz: până la 100 MW (producere)


Relaţia între Energie şi Putere

Energia şi puterea sunt două noţiuni strâns legate între ele. Utilizarea puterii pe o perioadă dată de timp va avea ca rezultat fie producerea fie consumul de energie.
Matematic legătura este simplă dacă vă amintiţi corect unităţile de măsură (kWh, kW şi ore). Relaţia este:

Energia (kWh) = Puterea (kW) x timp (ore)


Exemple
1. Un încălzitor electric cu puterea nominală de 1kW aflat in funcţiune timp de:
* 1 oră va consuma 1 x 1 = 1kWh
* 30 minute va consuma 1 x (30/60) = ½ kWh
2. O lampă fluorescentă cu o putere nominală de 20 Watt aflată in funcţiune timp de 8 de ore va consuma (20/1000) x 8 = 0,16 kWh.


Consideraţii finale

Puterea (măsurată în kilowatt) şi energia (măsurate în kilowatt-ore sau Joule) nu sunt identice şi nu se pot schimba între ele. Totuşi, conversia lor este relativ simplă, cu puţin exerciţiu.



Dacă doriţi să aflaţi mai multe informaţii, urmaţi link-urile de mai jos.
http://www.kayelaby.npl.co.uk
http://www.simetric.co.uk

Neil Packer este:
- Chartered engineer şi conferenţiar „Computing, Engineering and Technology Faculty”,
Staffordshire University, UK.; preda termodinamica şi mecanica fluidelor şi ingineria de mediu de
aproape 20 ani;
- Consultant pe probleme privind emisiile reduse de carbon; furnizeaza o gamă largă de servicii
energetice mediului de afaceri, industriei şi autorităţilor locale.
Date de contact:
Faculty of Computing, Engineering and Technology
Staffordshire University
Beaconside, Stafford, ST18 0AD
Tel 01785 353243 email n.packer@staffs.ac.u k
Aceste informaţii au fost prezentate ca parte a Proiectului Renewable Energies Transfer System
(RETS) finantat in INTERREG IVC prin European Regional Development Fund. Proiectul se
desfasoara in perioada ianuarie 2010 - December 2012. Pentru mai multe informaţii si pentru a
vă alătura comunităţii noastre online vizitaţi http://www.rets-community.eu


=========================================================== ===========================================================